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Steady and unsteady radiant heating of a plate and a cylinder are analyzed,  and a f i rs t -approximation 
solution is obtained by a method of averaging correction functions. 

Consider symmetr ica l  heating of a plate  of thickness 2b and a cyl inder  of radius R, the end faces of which are 
thermal ly  insulated.  It is assumed that the heating conditions of both plate and cylinder are those corresponding to a 
muffle furnace.  Then, according to [1], about 90% of the heating of the meta l  in the furnace space is due to radiat ive 
heat transfer. 

In what follows, therefore, the convection component will be neglected,  and the assumption made that only radi -  

ant heating occurs. 

Mathemat ica l ly ,  the problem is that of solving the equation of thermal  conduction with corresponding boundary 

conditions: 

OT 02T 
for the plate:  - -  a (1) 

Ot Ox 2 " 

0r ] 
OX x=b 

(2) 

OTox x=o=O;  (3) 

for the cylinder: OT = a ( 02T I OT ] (1') 
+ : 

Ot r Or 

OT I = h [ T ~ - - T ~ I ,  
Or Ir=R 

(2') 

OTor r=o = O. (3') 

Conditions (2) and (2')  reflect  the well-known Stefan-Boltzmann law, while conditions (3) and (3 ')  are based on 

symmetry of heat ing.  

Let us assume that the temperature  of the heating medium T c and al l  the thermophysical  parameters (a; h =av /k )  

are constant.  

For s impl ic i ty ,  we assume uniform ini t ia l  conditions 

T (x, 0) = To = 0; (4) 

r ( r ,  O) = r  o--- O. (4') 

Introducing new dimensionless variables and a re la t ive  tempera ture  function 

= hT~x, z = ah2T6~ t, u([, ~)= T([ ,  ~). (5) 

9_._hT.~r ' ~=ah2T~ct, u(9, ~ ) =  T(9, ~) . 
�9 T c  ' 

We transform equations (1), (1 ') ,  and conditions (2), (2 ') ,  (3), (3 ' ) ,  (4), and (4 ' )  as follows: 

(5') 
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OU a2u for the plate: _ _  _ ~  - -  (6) 

au ~=~= (1 - -u l  ), 
O~ 

rOu .1 --= O, 
O ~ t~=o 

(7) 

(s) 

. (~, 0) --- u0 ---- 0 ,  (9) 

where {l , -  hTac5 ; (10) 

Ou 02u 1 c?u 
for the cylinder: -= ~ -~- , (6') 

Op ap  2 9 of, 

Ou o=~, (1 4 . . . .  Us)  , (7') 
ap  , 

aua,o p=0 = 0. (s,) 

u (p, 0) -- u0 = 0, (9') 

where ~ = hr3cR. (10') 

Here we have adopted a rather unusual method of substituting variables (el. [2]) in order to write (1), (1'), (2) 
and (2') free of coefficients. 

To solve the problem, two stages must be distinguished - unsteady and steady heating. 

Unsteady heating: To investigate the initial phase of heating, when the heat front has not yet reached the middle of 
the plate, but has penetrated only to a certain depth )'(T), (6) must be solved for the somewhat different boundary con- 
ditions 

au] / == - -  (1 - -  U~s ); (11) 
O~ /~=0 

ul (L ~) ta=~ (el --- u0 = 0; (12) 

OUl I = O. (13) 

Expressions (12) and (13) are the conditions of conjugation of the function ul(~,T ) and the initial temperature 
u0 = 0 at the boundary between the heated and unheated parts of the ptate. It should be noted that the origin of co-  
ordinates is assumed to be not on the axis of symmetry, but at the left edge of the plate, in contrast to that for (6)-(9). 

For an approximate solution of this problem, the method of averaging correction functions [3, 4] is used, accord- 
ing to which, in the first approximation we put 

_0% h(,), 
0 g~ 

where fl(v) is the average rate of increase in temperature with respect to ~ in the region of perturbation 70-)- 

(14) 

h(~) = ---L-I~, ('0 ~ au~a = d~. (15) 
0 
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Integrating (14) twice, we have 
i s 

Ul (~, '1:) = f! ("C) 2 + A, (z) ~ + B, (9 .  (16) 

Using boundary conditions (12), (13), 
of fl(T) and T(T): 

we may express the unknown functions of integration AI(r ) and B{r) in terms 

A~ (9  = -- h ( 9  ~ (9 ,  (~7) 

fl (%) '~g ('Z) & ( 9  = ( i s )  
2 

Substituting (17) and (18) in (16), we find 

1~, "Q UUls[ 1 /gl 
t v ( 9  ' (19) 

where uUls= u,(o, 9 - h ( , ) ' ? ( 9  
2 

(20) 

The connection between functions y(r) and fl(r) can be expressed by the nonlinear relation 

~:t (':)Y"(J 4_ t 
- - } / 1  - f ,  ( , )  v ( - o ,  2 

which is obtained from condition (11), using (16)' (17) and (18). 

Introducing the new function 

(21) 

UI (~) =/1(%) ~(~), (22) 

we have, from (21) 

where 

v, (9 ~ @- = ~ 1 - vl (,), (~35 
2 

~ i  - vt(,) 
(24) 

Y ('0 = 2 v~ ('c) 

To determine function vl(r ), we use condition (15), into which we introduce the derivative of (16) with respect to 
t ime  r, taking into account (17), (18), (22) and (24). After the appropriate mathemat ica l  transformations, we arrive at 
the following differentia! equation relating to the unknown function vl(r): 

L~I '  2 " - f ) - !  ( ~ )  - -  dr1 ('~) = - -  3d ~. 
t ~  V 1 - -  vl ( :)  (25) 

To (25) we must add the initial condition 

v~ (o) = 1, (26) 

which follows from (24), since when r = 0 y(O) = O. 

Integration of (25), taking into account (26), leads to the following expression: 

_~1 In 1 - -  V 1 - v ~ ( ~ )  2 q- v~(~) V - l - v x ( J  = - 6~. 
2 1 + V l - v ~ ( ~ )  v~(~) 

(27) 
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It is not possible to obtain an exact expression for the function vl('r ) from this transcendental equation, but this is 
not necessary, since an approximate solution will suffice. From (20) and (23) we may write 

v ,  (,) = 1 - (,). 

After substituting (28) in (27) we have 

(28) 

4 
2 3 - - -  his 2 1 I n  1 --1- Uls . -1- Uls ~ 6 = .  . 
2 (1 4 )~ (29) 

2 1 -  trls -- Uls 

Since the period of unsteady heating is usually short, the relative temperature of the surface Uls << 1, In this 
2 

case, expanding in 1 -}- Uls'2 in a power series, and neglecting terms containing the factor Ulks (k -> 4) as compared 
1 - - U l s  

with unity, we obtain from (29) the approximation 

which is valid correct to 5% for Uls << 0. 625. 

Taking into account (28), (30) and (24), 

(30) Uls (m)---- 2 ' 

are obtain a formula defining the zone of thermal perturbation 

37 (z) - -  1 - -  2.25 z2 " (31) 

Substituting (30) and (31) in (19), we finally arrive at the following approximate expression for the relative tem-  
perature function for unsteady radiant heating and zero initial conditions 

ul (~' ~)-----lf6-~-~ [ 1 - (1 - 2"25 ~ 2 ) 2  T/-~ ~ ] "  " 
(s2) 

By means of (5) we can return to the original notation in formulas (31) and (32) 

( ) T~ (x, t) = hT4c ~/--~-[ 1 1--2"25a2h~T~2P . "; 
2 {6-d (33) 

t (t)---- l_2.25a2h~T~2t., " (34) 

The period of unsteady heating to is usually small. The term 2.25aZh4TlcZt z in (33) and (34) can therefore be 

neglected. Then (33) and (34) take the simplified form: 

r l  (x, t) = hT4c I f ~ - { -  (1 
2 \ 

l (t) = l 6a t .  

(35) 

The rate of propagation of the thermal perturbation may be obtained from (35) 

dl ~ / /  3a 
w ( t ) =  dt = 2 t "  (36) 

and also the period of unsteady heating of the plate 

b 2 
to ---- - -  (37) 

6a  

Let us establish the limits of application of the simplified formulas (35)-(38). For this we shall take the follow- 
ing values of the thermophysical parameters of the problem: T c = 1200~ o v = 3 �9 10-8 . 1. 1630 w/m 2 �9 degree; 
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O, 025 
X = 30 �9 1. 1630 w/m �9 degree; a = ~ mZ/sec. 

For these values of the parameters,  (35)-(38) may be used for t o -< 72 �9 103 sec correct to 5%. 
also establish the l imit ing plate thickness for which the foregoing simplif ied formulas are val id:  

2b < 2 g~6a-to = 1.1 m. 

If we introduce the well-known Fourier and Stark parameters 

F o ~  al~ ; Sk  = hT~ b, 
b ~ 

From (38) we can 

(38) 

(39) 

then, in the range 0 -< to - 2 hr, 0 --< b -< 0.55 m, the cri teria (39) assume the following values: 

0 4 Fo ~ ..< 0.17 (b = 0.55 mm; 0 ~ t o -% 2 hr ); 

o ~ F o ~  17 ( t o = 2 h r  ; O ~ . b ~ O . 5 5 m ) ;  

0 ~ s k ~  1.0 ( 0 4 b - < - 0 . 5 5 m ) .  

In calculat ing the heating of thicker plates, (33) and (34) must be used. 

Using the above method [3, 4], the problem of unsteady heating of a cyl inder may also be solved. Omitt ing 311 
the pre l iminary calculat ions,  the final formutas are 

TI (r, t) = hT4~ l f  3~-  [ 1 - -  
( 1 - -  9a~h4T~2t 2) ] 2 

2 ~,' 3a---{ (R - -  rt J ; (33') 

l (t)  = 1--9a~haT~2t 2 (34') 

For compara t ive ly  thin cylinders (R -< 1/hT3c), the period of unsteady heating will be short. 
s impl i f ied  formulas 

Then we may use the 

[, T1 (r, t) hr~ 

l ( t) = 2 ]/-3a-[; 

w (0 = V3- , 

R - - r  ]2; 
(35') 

(36') 

(37') 

t o = R~/12a. (38') 

Comparing (88) with (38') ,  we see that the period of unsteady heating of a cyl inder is less by a factor of two than 

that for a plate  of thickness 2b equal to the cylinder d iameter  2R. This result confirms similar  conclusions by other 
authors [5], and is a point in favor of the method of solution used. 

Steady heat ing:  The beginning of this period of heating is the end of the previous period, when the heat  front reaches 

the axis of symmetry of the body. This t ime  may be determined from (88) or (38') .  We propose to cal l  this period 
steady, because,  although the process stil l  depends on t ime ,  the re la t ive  character  of the tempera ture  distribution over 

the cross section of the heated body is a l ready assumed to be fixed. 

To evaluate  the tempera ture  distribution function over the section in this stage, we must solve (6) or (8')  with 
boundary conditions (7) and (8), or (7') and (8 ') .  The in i t ia l  condition is discussed below. 

We shall  obtain an approximate  solution of the problem, using the same method of averaging correct ion func- 
tions. As before, we write down expressions (14), (18) and (16) for the plate .  We determine  the integrat ion functions 
from (7) and (8) and have 

(40) 
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The expression analogous to (15), taking into account (40), leads to the differential equation 

dr2 3die 3 d : 
+ V (41) 

4~ f2 ~/(1 - -  ~ f~)3 

By simple quadrature we obtain from (41) the following transcendental expression: 

lnf~(-c) - - - ~  a 

mo 

i 3 (42) + a rc th  V i  - -  [~ f~ (~) = - -  - i f (~ - % ) .  

% 

Noting that the temperature at the surface is 

U2s = U S('~, 'Q = ~ /1  - -  ~ f2 (x), (43) 

we can easily put (42) in a form very close to formula (16) of [6] 

Q Sk (Fo  - -  Fo ~ = [r (.:) - -  q~ (%)] + 0.~,33 Sk [} (~) - -  ~ (%)1, (44) 

1 [a rc tgu2s  +, a rc thu , , s l "  (45) 
= 2  - -  - 

q~ (z) = - -  In ( 1 - t~s ) ; (46) 

/tO s - -  Uls (to).  (47) 

Equation (47) is required as the initial condition of the problem in the second stage of heating. 

The steady relative tempera ture  distribution function (40), taking into account (43) and (5), can easily be put in 
the form: 

4 4 Sk ( :c ~ ) 
T~(x, t) = T 2 s  ( t ) - - [ T o - - T 2 s  ( : ) l  2T---~ 1 - -  b" " (48) 

The corresponding formula for the heating of a cylinde r may be obtained similarly 

2Sk (Fo - -  Fo ~ = [~p (z) - -  q~ (%) + 0.333 Sk [,5 (z) - -  ~ (%)1; (44') 

Sk ( 1 - -  r~ r 2 ( r ,  t ) = r 2 s  ( t ) - - [ T 4 c - - T 4 s ( t ) l ~ - ~ - a  \ R 2 ) '  (48') 

Relations (44) and (44') differ from (16) of [6] only in that in [6] the coefficient of Sk *0") is not 0. 333 but m0/n 0, 
the values of which are given by a number of graphs. All the graphs show, however, that in practice m0/n0 differs little 
from 0. 333, especially for large Stark numbers, i . e . ,  for thick bodies, while for thin bodies the Stark number itself is 
small,  so that the second term in (44) or (44') may be neglected.  

Thus, the method of averaging correction functions, even in the first approximation, leads to sufficiently accu-  
rate results for practical  purposes. The temperature  behavior of the plate under steady radiant heating is obtained here 
in the form of the quadratic parabola (48) and (48') .  

A parabolic temperature  law has previously been assumed in many papers dealing with steady radiative heating 
[1, 2, 5]. 

it is pointed out in [6], however, that "although the parabolic law allows sufficiently accurate calculation of cer-  
tain data relating to the heating of a thick body, it is nevertheless unreliable and can be a source of large errors when 
widely used. ~ 

This warning was based on the following arguments of the authors [6]. They present the expression for rate of 
heating in terms of the parabolic distribution law 

dT D (t) 
= (49)  

dt (x/b) 2-~ 

If x is put equal to zero in (49), the rate of heating on the axis of symmetry becomes infinite, which cannot be 
the case, Hence the authors arrived at the above conclusion, 
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It is quite evident, however, that if the exponent n of the parabola -> 2, the rate of heating will be finite every- 
where. However, n must not be greater than 2, since otherwise the rate of heating on the axis of symmetry becomes 
zero, which is again impossible. 

Therefore, if the temperature distribution function is assumed to be parabolic, it can only be of second degree, 
as this paper confirms analyt ical ly.  Improvement in accuracy of the results obtained should be sought, not through 
choice of the degree of the parabola, but by finding new distribution functions differing from the customary parabolic 
law. This can evidently be done by solving the problem by the method of [3, 4] in the second approximation. 

NOTATION 

T(x, t), T(r, t) - respectively, temperature of plate and cylinder at t ime t and distance x or r from axis of sym- 

metry; T c = const. - temperature of heating medium; Ts(t ) - surface temperature; To = 0 - ini t ia l  temperature; a - 
thermal diffusivity; h - heat transfer coefficient; o v - apparent radiation coefficient; X - thermal conductivity; 2b - 
plate thickness; R -- cylinder radius; /(t) - depth of zone of penetration of temperature perturbation inside body; w(t) - 

rate of penetration of temperature perturbation; t o - period of unsteady heating; Sk - Stark number; Fo - Fourier num-  

ber. 
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